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Metastate approach to thermodynamic chaos
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In realistic disordered systems, such as the Edwards-Anderson~EA! spin glass, no order parameter, such as
the Parisi overlap distribution, can be both translation-invariant and non-self-averaging. The standard mean-
field picture of the EA spin glass phase can therefore not be valid in any dimension and at any temperature.
Further analysis shows that, in general, when systems have many competing~pure! thermodynamic states, a
single state which is a mixture of many of them~as in the standard mean-field picture! contains insufficient
information to reveal the full thermodynamic structure. We propose a different approach, in which an appro-
priate thermodynamic description of such a system is instead based on ametastate, which is anensembleof
~possibly mixed! thermodynamic states. This approach, modeled on chaotic dynamical systems, is needed
when chaotic size dependence~of finite volume correlations! is present. Here replicas arise in a natural way,
when a metastate is specified by its~meta!correlations. The metastate approach explains, connects, and unifies
such concepts as replica symmetry breaking, chaotic size dependence and replica nonindependence. Further-
more, it replaces the older idea of non-self-averaging as dependence on the bulk couplings with the concept of
dependence on the state within the metastate atfixed coupling realization. We use these ideas to classify
possible metastates for the EA model, and discuss two scenarios introduced by us earlier—a nonstandard
mean-field picture and a picture intermediate between that and the usual scaling-droplet picture.
@S1063-651X~97!06905-5#

PACS number~s!: 05.50.1q, 75.10.Nr, 75.50.Lk, 05.45.1b
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I. INTRODUCTION

The nature of the spin glass phase remains a fundame
and unsolved problem in both condensed matter physics
statistical mechanics despite over 20 years of intensive
search. At a more basic level, the proper theoretical tr
ment of systems with quenched disorder and frustration
mains open. More recent experiments exhibiting intrigu
properties such as aging have not helped to resolve mat
but have instead intensified the ongoing debate@1#.

Spin glasses can be metallic or insulating, uniaxial or i
tropic, mostly crystalline, or completely amorphous; in ge
eral they are not confined to a single set of materials. T
microscopic interactions which give rise to spin glass beh
ior may differ considerably from one material to anoth
~For a more extensive discussion, see the review article
Binder and Young@2#.! Nevertheless, in 1975 Edwards an
Anderson~EA! @3# proposed a simple~and unifying! Hamil-
tonian to describe the thermodynamic, magnetic, and
namical properties of realistic spin glasses. Their basic
sumption was that the essence of spin glass behavior a
from a competition between quenched ferromagnetic and
tiferromagnetic interactions, randomly distributed through
the system.

While the EA model and its mean-field version, th
Sherrington-Kirkpatrick~SK! model@4#, remain the primary
focus of theoretical treatments of spin glasses, a numbe
other models have also been proposed@2#. It is not our aim in
this paper to compare the suitability of these models for
description of all, or some subset of, laboratory spin glas
Here we are concerned instead with presenting the cor
551063-651X/97/55~5!/5194~18!/$10.00
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thermodynamic approach to understanding macrosco
properties of not only spin glasses, but, more generally, s
tems which may have many competing pure states. Throu
out this paper we will often apply our ideas and methods
the EA spin glass model—in particular, in its Ising form—
but our scope is more general and is not confined to a
ticular model or a single condensed matter system. We
begin, however, by considering some of the very basic o
questions which arise in connection with the EA Ising sp
glass and related models.

These open problems cover both thermodynamic and
namical questions. It is somewhat discouraging that they p
sist at such a basic level. Very slow equilibration times ma
the analysis of both laboratory experiments and numer
simulations difficult; and techniques for the theoretic
analysis of systems with quenched disorder and frustra
remain primitive. So, for example, even though there h
been a steady accumulation of evidence that there exis
true thermodynamic phase transition in the EA model~and in
real spin glasses!, it is fair to say that the issue is not ye
closed~and from the standpoint of a mathematical proof,
even a convincing heuristic argument, remains wide open!. If
an equilibrium phase transition does exist, the lower criti
dimension—and in particular, whether it is above or belo
three—is similarly unknown~see, for example, Refs.@5–7#!.

Assuming the existence of a phase transition in some
mension, other open thermodynamic issues include the e
of a magnetic field on the transition; the number of pu
states below the transition; the correct description of bro
symmetry and the nature of the order parameter; crit
properties at the transition; the role of quenched disor
5194 © 1997 The American Physical Society
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55 5195METASTATE APPROACH TO THERMODYNAMIC CHAOS
and/or frustration, separately and together, in determin
ground state structure and multiplicity@8,9#; and the relation-
ship between the properties of mean-field models and re
tic spin glasses. These are only a subset of such very b
questions, which remain the subject of intense debate.

Dynamical properties are central to spin glass physic
here, open problems include the origin of long relaxat
times, the understanding of frequency-dependent suscep
ity experiments, the origin and interpretation of aging, a
the nature of metastable states. As before, this is only a s
sample of outstanding questions. Tying together both
thermodynamic and dynamical problems is the general is
of the nature of broken ergodicity~BE! in spin glasses@10–
12#. BE may also serve as a bridge toward an investiga
of the relationships, if any, between spin glasses and o
disordered systems—structural glasses, electric dip
glasses, quadrupolar glasses, and so on@2#.

Some thermodynamic questions are of direct experime
relevance: low-temperature properties cannot be unders
without knowing the nature of low-energy excitations abo
the ground state~s!; a knowledge of the critical behavior i
required before properties nearTc ~if it exists! can be ex-
plained. It should also be emphasized that many~though not
all! important dynamical questions cannot be properly und
stood, or in some cases even posed, without a correct
modynamic theory of spin glasses. For example, what is
relationship, if any, between the metastable states of a
glass and the pure thermodynamic states@13,14#? Moreover,
many experiments, e.g., aging, have been explained u
conflicting theoretical pictures@15–24#. In the absence o
conclusive experimental~or even numerical! data deciding
the matter, how does one decide among different theorie
the spin glass state, much less explain the experimenta
servations?

Our concern in this paper is therefore with the thermo
namic nature of spin glasses. In two recent papers@25,26#,
we introduced several concepts that we believe are cru
for providing a correct and complete description of the eq
librium statistical mechanics of spin glasses and other di
dered and/or inhomogeneous systems. Our approach, m
eled on chaotic dynamical systems, is necessary in partic
for understanding systems with competing thermodyna
states. The unifying idea is that of the metastate@26,27#,
which enables us to explain and relate chaotic size dep
dence@28#, replica symmetry breaking@29#, replica noninde-
pendence, and overlap~non-!self-averaging.

Using the notion of the metastate, we have classified
lowable thermodynamic ‘‘solutions’’ of the spin glass pha
and ruled out others, including one which has long dom
nated the theoretical literature. In this paper, we will expa
and clarify the ideas presented in Refs.@25# and@26#, and use
them to present a coherent approach to the thermodyna
of spin glasses and, more generally, to disordered and o
systems with many competing states. We will begin by d
cussing a long-standing controversy over the thermodyna
nature of the spin glass phase.

This controversy focuses on the multiplicity and orderi
of pure states in realistic spin glasses in finite dimensions
temperatures below someTc.0 ~which, supported by vari-
ous arguments, is assumed to exist!. One approach, which
has dominated the spin glass literature for over a dec
g
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assumes that the main features of Parisi and co-workers
lution @30–33# of the infinite-ranged SK model—an infinit
number of pure states, organized by an ultrametric ove
structure @33#, and whose pairwise overlaps are non-se
averaging even in the thermodynamic limit@33#—apply also
to realistic spin glasses. In this scenario, the number of o
parameters is infinite—i.e., the order parameter is a distri
tion that is a function of a continuous variable, and this d
tribution has a characteristic structure, both for a single re
ization of the couplings, and for the average over all su
realizations. The nature of the symmetry breaking here
fers from more conventional kinds, familiar from studies
various nondisordered systems: in Parisi’s solution, the s
glass phase~s! exhibit spontaneously broken replica symm
try of a nontrivial kind.

An alternative point of view arises from a scaling ansa
due to MacMillan@34#, Bray and Moore@35#, and Fisher and
Huse @36–39#. This gave rise to a thermodynamic pictu
very different from that implied by the Parisi solution~al-
though some features, such as chaotic dependence of c
lation functions on temperature, are similar in the two p
tures!. In particular, the droplet analysis of Fisher and Hu
@38,39# led to the conclusion that there exists, at any te
perature and in any finite dimension, at most a pair of p
states~see, however,@40# for a critique of this prediction!.
Here the order parameter and the nature of symmetry br
ing is markedly different from that of the Parisi picture.

These two pictures reach opposite conclusions on a n
ber of other thermodynamic issues; for example, any exte
magnetic field destroys the phase transition in the dro
picture, while that based on the Parisi solution displays
Almeida-Thouless line@41#. ~For discussions on whether nu
merical evidence supports such a transition, see R
@42,43#.!

Both pictures also imply certain dynamical behavior f
spin glasses. However, although the physical origins beh
various dynamical mechanisms differ markedly in the tw
pictures, their observable consequences are often sim
~see, for example, the experimental and theoretical disc
sions on aging in Refs.@15–24#!, and most experiments hav
so far been unable to distinguish between the two pictu
~One possible exception, however, is the set of experime
on noise in mesoscopic spin glass samples by Weiss
@44#.!

In addition to these pictures, there also exist scaling
proaches which predict many pure state pairs at low temp
ture above three dimensions@45#. A number of other specu
lative pictures of the spin glass state have also appeared~see
@2# for a more thorough presentation!, but it is probably fair
to say that the scaling-droplet and Parisi pictures prese
above have dominated the discussion of the nature of
spin glass phase~s!.

The droplet picture of Fisher and Huse makes a numbe
clear predictions, and is relatively easy to interpret for re
istic spin glasses. This has not generally been the case fo
Parisi ansatz, and indeed an important issue—although
always recognized as such—is to interpret the implicatio
of the Parisi solution, both thermodynamically and dynam
cally, for the spin glass phase in finite dimensions. A lar
literature~see below! exists on the subject, and as a resul
reasonably clear consensus has emerged on the therm
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5196 55C. M. NEWMAN AND D. L. STEIN
namic structure of short-ranged spin glasses given that
Parisi ansatz holds for them also. We have called this
‘‘standard SK picture’’ in@25# and @26#, and will use that
terminology also throughout this paper.

The main result of@25# was to prove, however, that th
standard SK picture cannot apply to realistic spin glasse
any dimension and at any temperature. This result then le
@26# to an observation which is central to understanding a
system with many competing thermodynamic states:
should not focus on any particular~mixed! thermodynamic
state, which cannot provide sufficient information to descr
the thermodynamic structure; instead, one must conside
metastate, which is essentially a probability distribution ove
the thermodynamic states. One important consequenc
@25# and @26# is to redefine the meaning of non-se
averaging, and to show that most quantities of interest ca
defined for asingle realization of the disorder~including
those which had been thought to be non-self-averaging in
thermodynamic limit!. One can then focus on, and ma
meaningful statements about, a particular sample rather
an ensemble of samples. This feature should hold also
nondisordered~e.g., inhomogeneous! systems in general.

Using the metastate approach, we were able to nar
down the possible thermodynamic structures for reali
spin glasses. One of these is the scaling-droplet pict
some are new, to our knowledge. Finally, we propose
possible picture which incorporates some of the feature
the Parisi solution for the SK model. In fact, this is th
‘‘maximal’’ mean-field picture allowable for realistic spi
glasses, but it differs considerably from the familiar stand
SK picture presented in the literature. We call this scena
the ‘‘nonstandard SK picture,’’ and will discuss it in Se
VII. One important lesson from our analysis is that, for d
ordered systems, the features which characterize the sy
in very large but finite volumes may lead to a misleadi
thermodynamic picture if straightforwardly extrapolated
infinite volumes. This is of potential importance, for e
ample, in interpreting numerical results. There are previou
unsuspected intricacies involved in taking the thermo
namic limit for certain disordered systems.

The plan of the paper is as follows. In Sec. II we revie
some basic features of the EA model and discuss its fin
and infinite-volume Gibbs states. We discuss the problem
whether many pure states may exist at some dimension
temperature, and show that the answer is independent of
pling realization. In Sec. III we introduce the SK model a
the Parisi ansatz for its thermodynamic structure. In Sec
we discuss the standard mean-field picture for realistic s
glass models in finite dimension. We then show that t
picture cannot hold in any dimension and at any temperat
We also provide an explicit construction of a non-se
averaged thermodynamic state whose overlap distribu
function must be self-averaged. In Sec. V we describe
approach to the thermodynamics of systems with many c
peting states, based on the idea of themetastate, anensemble
of thermodynamic states. We also present some of the
sible scenarios for the metastate of the EA model, includ
one that is intermediate between the scaling-droplet
mean-field pictures. In Sec. VI we show how replicas ar
naturally within this approach, and how the older idea
replica symmetry breaking is understood and unified w
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newer ideas of dispersal of the metastate and replica n
independence. A replacement for the usual definition of n
self-averaging is also presented. In Sec. VII we introduce
maximal mean-field picture allowable for realistic sp
glasses, and show that its thermodynamic features are
siderably different from those of the more familiar pictu
~which cannot hold!. In Sec. VIII, we summarize our main
results, and discuss their implications for the study of s
glasses and, in a larger framework, systems with many c
peting states in general. Finally, in the Appendix, we disc
the importance of distinguishing among differing constru
tions of overlap distributions in the literature.

II. EDWARDS-ANDERSON MODEL

The EA model@3# on a cubic lattice ind dimensions is
described by the Hamiltonian

HJ ~s!52 (
^x,y&

Jxysxsy , ~1!

whereJ denotes the set of couplingsJxy, and where the
brackets indicate that the sum is over nearest-neighbor p
only, with the sitesx,yPZd. We will take the spinssx to be
Ising, i.e.,sx561; although this will affect the details o
our discussion, it is unimportant for our main conclusion
The couplingsJxy are quenched, independent, identica
distributed random variables; throughout the paper we w
assume their common distribution to be symmetric ab
zero~and usually with the variance fixed to be 1!. The most
common examples are the Gaussian and6J distributions.

Equation~1! is the EA Ising Hamiltonian for an infinite-
volume spin glass onZd; it is important also to define the EA
model on a finite volume, given specified boundary con
tions. LetLL be a cube of side 2L11 centered at the origin
i.e., LL5$2L,2L11, . . . ,L%d. The finite-volume EA
Hamiltonian is then just that of Eq.~1! confined to the vol-
umeLL , with the spins on the boundary]LL of the cube
obeying the specified boundary condition.~The boundary
]LL of the volumeLL consists of all sites not inLL with
one nearest neighbor belonging toLL .) For example, the
Hamiltonian withfreeboundary conditions is simply

HJ,Lf ~s!52 (
^x,y&PLL

Jxysxsy . ~2!

Another important boundary condition, called a fixed b.c.,
where the value of each spin on the boundary is specified
we denote bys̄ the specified boundary spins, then th
Hamiltonian becomes

HJ,Ls̄ ~s!5HJ,Lf ~s!2 (
^x,y&

xPLL ,yP]LL

Jxysxs̄y . ~3!

We will frequently employ a familiar and commonly use
boundary condition, namely, periodic boundary conditio
where each face of the cubeLL is identified with its opposite
face. These are generally thought of as minimizing the
fects of the boundary~but see van Enter@40#!, and allow us
to construct manifestly translation-covariant states.
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55 5197METASTATE APPROACH TO THERMODYNAMIC CHAOS
Given the EA HamiltonianHJ,L on a finite volumeLL
with a specified boundary condition~e.g., free or fixed or
periodic, but without the boundary condition superscr
here!, we can now define the finite-volume Gibbs distrib
tion rJ,b

(L) on LL at inverse temperatureb:

rJ,b
~L ! ~s!5ZL,b

21exp$2bHJ,L~s!%, ~4!

where the partition functionZL,b is such that the sum o
rJ,b
(L) over all spin configurations inLL yields 1. In addition
to the boundary conditions mentioned so far, one also c
siders so-called mixed boundary conditions where the Gi
distribution is a convex combination of the fixed bounda
condition distributions for a givenL with the weights for the
different s̄ ’s adding up to 1.

rJ,b
(L) (s) is a finite-volume probability measure, descri

ing at fixedb the likelihood of appearance, within the vo
umeLL , of a given spin configuration obeying the specifi
boundary condition. Equivalently, the measure is speci
by the set of all correlation functions withinLL , i.e., by the
set of all ^sx1

. . .sxm
& for arbitrary m and arbitrary

x1 , . . . ,xmPLL .
Thermodynamicstates are described byinfinite-volume

Gibbs measures, and therefore can be thought of~and indeed,
constructed! as a limiting measure of a sequence, asL→`,
of such finite-volume measures~each with a specified bound
ary condition, which may remain the same or may chan
with L) @46#. The idea of a limiting measure can be ma
precise by requiring that everym-spin correlation function,
for m51,2, . . . , possesses a limit asL→`.

It is clear that, if there is more than one thermodynam
state~at a given temperature! and if arbitrary boundary con
ditions are allowed for eachL, different sequences~of vol-
umes and/or boundary conditions! can have different limiting
measures. What is less obvious, but will have important c
sequences for spin glasses, is that if many thermodyna
states exist, a sequence of measures each having thesame
~e.g., periodic or free! boundary condition may not eve
havea limit @28#. This phenomenon, which we callchaotic
size dependence, will be more fully described in Sec. V
Because of compactness~i.e., because each of the correl
tions determining the measure takes values in@21,1#, a
bounded closed interval!, it follows, however, that every
such infinite sequence will have some subsequence~s! with a
single limit, so that we are guaranteed the existence o
least one thermodynamic state~i.e., infinite-volume Gibbs
distribution!. At sufficiently high temperatures it is rigor
ously known~see below! that there exists only one such sta
~limiting Gibbs measure!, which of course is the paramag
netic state. If the spin-flip symmetry present in the E
Hamiltonian Eq.~1! is spontaneously broken above som
dimensiond0 and below some temperatureTc(d), there will
be at least apair of limiting measures, such that their eve
spin correlation functions will be identical, and their od
spin correlation functions will have the opposite sign. A
suming that such broken spin-flip symmetry indeed exists
d.d0 and T,Tc(d), the question of whether there exis
more than onesuch limiting pair ~of spin-flip-related
infinite-volume Gibbs distributions! is a central unresolved
issue for the EA and related models.
t
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Thermodynamic states may or may not be mixtures
other states. If a Gibbs staterJ,b can be decomposed accor
ing to

rJ,b5lrJ,b
1 1~12l!rJ,b

2 , ~5!

where 0,l,1 andr1 andr2 are also infinite-volume Gibbs
states~distinct from r), then we say thatrJ,b is a mixed
thermodynamic state or simply, mixed state.~A mixed state
may, of course, have many, perhaps infinitely many, state
its decomposition.! The meaning of Eq.~5! can be under-
stood as follows: Any correlation function computed usi
the Gibbs distributionrJ,b can be decomposed as

^sx1
•••sxm

&rJ,b
5l^sx1

•••sxm
&rJ,b

1

1~12l!^sx1
•••sxm

&rJ,b
2 . ~6!

If a state cannot be written as a convex combination
any other infinite-volume Gibbs states, it is called apure ~or
extremal! state. As an illustration, the paramagnetic state
pure state, as are each of the positive and negative mag
zation states in the Ising ferromagnet. In that same syst
the Gibbs state produced by a sequence of increasing
umes, atT,Tc , using only periodic or free boundary con
ditions is a mixed state, decomposable into the positive
negative magnetization states, withl5 1

2. A pure staterP can
be intrinsically characterized by aclustering property~see,
e.g.,@47,48#!, which implies that, for any fixedx,

^sxsy&rP
2^sx&rP

^sy&rP
→0, uyu→`, ~7!

and similar clustering for higher-order correlations.
Let h(J,d,b) now denote the number of pure states

the EA model for a specific coupling realizationJ. For any
d andJ this equals one at sufficiently lowb ~except for a set
of J ’s with zero probability according to the underlyin
disorder distribution—see, e.g., Chapter 3 of@50# and the
references cited there!. Recall that the droplet picture pre
dicts thath(J,d,b)<2 for all d andb, while the SK picture
assumes thath(J,d,b)5` for d above some~unknown!
d0 andb.bc(d).

A reasonable question might then be, could the answe~at
fixed b and d) depend onJ ? What if h52 for half the
coupling realizations~i.e., for a set of coupling realization
with probability 1

2!, and infinity for the other half? As it turns
out, this cannot happen: for a fixed coupling distribution,h
at some (d,b) must have the same value forall instances
J chosen from the disorder distribution~or more precisely,
for almost everyJ—i.e., except for a set with probability
zero!. In other words,h(J,d,b) is self-averaged; for fixed
d andb, it is a constant almost surely as a function ofJ.

The above statement is mathematically rigorous, but si
its proof, and that of all other theorems which appear in t
paper, have appeared elsewhere~see, e.g.,@49,50#!, we here
recount only the central arguments.~These arguments will be
useful later when we discuss possible scenarios for the t
modynamic structure of the spin glass phase in the
model.! We first note thath(J,d,b) is clearly translation-
invariant; i.e., if all couplings are translated by any latti
vectora, so that eachJ→Ja ~i.e., Jxy→Jx1a,y1a), the func-
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5198 55C. M. NEWMAN AND D. L. STEIN
tion is unchanged:h(J,d,b)5h(Ja,d,b). We next note
that the disorder distributionn(J) ~e.g., an independen
Gaussian distribution of mean zero and variance one at e
bond on the lattice! is both translation-invariant~trivially !
and translation-ergodic. Translation ergodicity means tha
for n-almost everyJ, the ~spatial! average of translate

f̂ (J a) of any ~measurable! function f̂ on J equals then

average off̂ . @As a trivial example, consider a 1d problem

where the functionf̂ (J ) is just the coupling valueJ01 at a

given location on the line. The average off̂ (J a) along the
line is clearly 0; so is the distribution average at any s

Similarly, for the functionf̂ (J )5(J01)
k, the spatial average

along the line equals the distribution average at a site,
thekth moment of the random variableJ01.# That translation
ergodicity in several dimensions holds analogously to
more familiar one-dimensional case seems to have first b
shown by Wiener@51#.

The assumption thatf̂ be measurable is a necessary, b
somewhat technical requirement. A proof thath(J,d,b) sat-
isfies the necessary measurability properties appear
@49,50#, and will not be discussed further here, except to n

that measurability of a functionf̂ is the minimal requiremen

for having a well-defined meaning for the average off̂ over
the disorder distributionn.

Returning to the main argument, we note that beca
h(J,d,b) is a translation-invariant function of random var
ablesJ whose distribution is translation-ergodic, by avera
ing h(J a,d,b)5h(J,d,b) over translates, it follows tha
h(J,d,b) equals a constanth(d,b) almost surely~i.e., for
almost everyJ ). h(d,b) is the distribution average o
h(J,d,b) and it could of course depend on thedistribution
from which the couplings are chosen, but not on any spec
realization chosen from afixeddistribution.

The same line of reasoning used here to show that
number of pure states at fixedd andb is the same for almos
every realizationJ was used in@25# to rule out the standard
SK picture. This will be discussed later in Sec. IV, but fir
we present a discussion of the infinite-ranged SK model
the Parisi solution.

III. MEAN-FIELD THEORY AND THE PARISI SOLUTION

The SK model has played an important role in spin gl
physics for several reasons. First among these is that it is
of the few~nontrivial! spin glass models which is~generally!
believed to have been solved. Moreover, the proposed s
tion, due to Parisi and co-workers@30,31,33# admits a strik-
ing type of symmetry breaking, calledreplica symmetry
breaking~RSB!, of a form previously unseen in other~non-
disordered! systems. The possibility that RSB plays an im
portant role in the physics ofrealistic ~i.e., finite dimen-
sional! spin glasses and, possibly, other complex systems
generated a substantial literature~see, for example, Refs
@6,13,14,33,52–61#!, and remains controversial.

The SK model is simply the infinite-ranged version of t
EA model and thus has no spatial structure. The volumeLd

is replaced byN, the number of spins, and the Hamiltonian
ch
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HJ,N~s!52
1

AN (
i. j51

N

Ji js is j , ~8!

where the factor 1/AN ensures that the energy per spin r
mains finite~and nonzero! asN→` ~given that, as before
the distribution of eachJi j is symmetric about zero and ha
variance 1!. Because there is no natural sense of a bound
in this model, one usually considers simply a sequence
Hamiltonians of the form~8! with increasingN. The prob-
ability measure on spin configurations in this model is giv
by

rJ,b
~N! ~s!5ZN,b

21 exp$2bHJ,N~s!%. ~9!

It has been known for many years@62# that a correct
treatment of quenched disorder involves an averaging~over
the couplings! of the free energy and other extensive va
ables rather than of the partition function. The replica tri
@3,63,64# was introduced as a tool for doing such an avera
because of the lack of spatial structure in the SK model, i
especially well suited for this approach. Using the repl
trick, SK demonstrated the existence of a phase transit
but found that the resulting low-temperature phase was
physical @4#. It is currently believed that their solution wa
unstable because it was replica symmetric. Several attem
were made to introduce solutions which broke the repl
symmetry@65#, but it is now thought that the correct proce
dure to break replica symmetry in the low-temperature ph
of the SK model was the one introduced by Parisi@30#.

The Parisi solution to the SK model is both stable a
agrees well with numerical results@29#; moreover, some of
its essential features can be rederived without the use of
licas, primarily through a cavity method@66,67#. Parisi’s ap-
proach suggests that there are many pure states of
infinite-ranged model, organized in a highly specific mann
which characterizes the SK spin glass phase and its mod
symmetry breaking. Although Parisi’s solution predic
many other important features of the spin glass phase@2,29#,
we will focus here only on its aspects regarding symme
breaking and order parameters.

We first need to comment on what is meant by ‘‘pu
state’’ in the SK model, since a precise definition is n
available and its meaning remains quite unclear. Other
proaches to spin glass mean-field theory~e.g., the Thouless-
Anderson-Palme equations@68#! had already suggested th
existence of many states at low temperature, in the sense
many solutions could be found which were extrema of
free energy, some subset of which were believed to
minima @69#. It had further been argued that they were se
rated by barriers which diverged in the thermodynamic lim
@70,71#. These are what have come to be called@29# the
‘‘pure states’’ of the SK model. The clustering property d
scribed by Eq.~7! cannot be used in an infinite-range
model, which has no spatial structure, but it has been s
gested@2,29# that it can be replaced by

lim
N→`

^s is j&b,N2^s i&b,N^s j&b,N50 ~ iÞ j !, ~10!

where averages are taken using the distribution corresp
ing to one of these pure states. The meaning of the avera
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in Eq. ~10! is poorly defined, however. Because the stren
of the random couplings scales to zero asN→`, it is unclear
what meaning, if any, can be ascribed to the notion of n
trivial thermodynamic states, pure or mixed. In the E
model, on the other hand, methods do exist, as will be bri
discussed in Sec. IV, to construct just such states, for alm
everyJ. This contrast between the SK and EA models w
be seen to be significant.

However, in accordance with the usual practice, we w
ignore these complications in what follows, though keep
in mind that the meaning of pure state in the SK cont
remains vague. Using a replica analysis, Parisi found that
SK spin glass state could be described properly only with
infinite number of order parameters, describing the relati
among the many pure states. This requires the introduc
of a new random variable which describes thereplica over-
lap,

QN5
1

N(
i51

N

s is i8 , ~11!

where the spin configurationss ands8 are chosen indepen
dently from the distributionrJ,b

(N) (s) given by Eq.~9!. @Tech-
nically, s and s8 are said to be chosen from theproduct
distribution rJ,b

(N) (s)rJ,b
(N) (s8).# It is clear that21,QN,1

for any N. ~The subscriptb will be suppressed in expres
sions related to replica overlaps and their distributions. I
understood that all calculations take place at fixedb, and the
results depend onb.!

The role of order parameter in the Parisi theory is play
not by a single variable, but rather by the probability dens
PJ,N(q) of the random variableQN ~or functions closely
related to it!; i.e., PJ,N(q)dq is the probability that the ran
dom variableQN takes on a value betweenq andq1dq ~for
fixedJ, N andb). Above the critical temperature~i.e., in the
paramagnetic state!, the distribution ofQN converges to a
d function at zero asN→`. Below this temperature, how
ever, the presumed existence of many states gives rise
rich and nontrivial behavior ofPJ,N(q). In particular, Parisi
found that in the spin glass phase,PJ,N(q) approximates a
sum of manyd functions, with weights and locations de
pending onJ even in the limitN→`. This is the first ap-
pearance of non-self-averaging~NSA!, which plays a centra
role in the Parisi theory of the spin glass phase.

The usual explanation given for this behavior is that
large N the Gibbs measurerJ,b

(N) given by Eq. ~9! ~for
b.bc) has a decomposition into many pure statesrJ

a ,
wherea indexes the pure states

rJ
~N!~s!'(

a
WJ

a rJ
a~s!, ~12!

whereWJ
a denotes the weight of pure statea and the depen-

dence on the inverse temperatureb has been suppresse
~The use of the approximation sign is necessary becaus
the haziness of the meaning of pure state, as discu
above.! Granted the existence of these pure states, one
then consider the case wheres is drawn from the distribu-
tion rJ

a ands8 independently fromrJ
g ; then the expression

in Eq. ~11! equals its thermal mean
h
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qJ
ag'

1

N(
i51

N

^s i&
a^s j&

g. ~13!

Finally, the densityPJ,N(q) is then given by

PJ,N~q!'(
a,g

WJ
aWJ

gd~q2qJ
ag!. ~14!

These expressions can be made precise for the EA mode
will be seen in Sec. IV.

TheqJ
ag’s also exhibit NSA for arbitrarily largeN, except

for the trivial casesa5g anda52g ~where the minus sign
denotes a global spin flip!, which correspond respectively t
the self-overlapsqEA and2qEA ~with no dependence onJ
or a). Why do we not then simply examine theN→` limit
of the qJ

ag’s and their distribution?A priori it might seem
that, even though the states themselves are not well defi
for infinite N, their overlapsmight still have a well-defined
limit. It can be proved, however, thatthe existence of the
N→` limit (where the limit is taken in aJ-independent
manner) of the distribution of the qJ

ag’s is inconsistent with
NSA@28#. This is the first appearance of chaotic size dep
dence, which will be seen later to play a central role in t
analysis of systems with many competing states.

Even though the decomposition of Eq.~12! is presumed to
consist of infinitely many states asN→`, it is believed@29#
that relatively few of them have non-negligible weight~and
are therefore thermodynamically significant!. These lowest-
lying states are believed to have free-energy difference
order 1 ~for arbitrarily largeN), and their density rises ex
ponentially@66,67# at the lowest energies.

So far we have only discussed the overlaps among p
of pure states. The relationships among triples of pure st
were also investigated@33#, and were found to have an u
trametric structure. That is, the Hamming distances~deter-
mined by the overlaps! among any three pure states are su
that the largest two are always equal~with the third smaller
than or equal to the other two!.

The main features of the Parisi analysis of the SK mod
relevant to the ordering of the spin glass phase, are then
following: ~1! The spin glass phase consists of a mixture
infinitely many pure states. Two replicas have non-negligi
probability of appearing in different pure states~not related
by a trivial global spin flip!. This is one interpretation o
spontaneous replica symmetry breaking~RSB!. ~2! For fixed
J, the probability densityPJ (q) consists of a sum of~ap-
proximate! d functions at discrete locationsq such that
2qEA,q,qEA , and a pair always at6qEA . The weights
and locations of thed functions, excluding the pair a
6qEA , depend onJ, even asN→` ~NSA!. ~3! Because of
this variation withJ of the ‘‘interior’’ d functions, the aver-
ageP(q)5 P̄J(q) over all ~uncountably many! coupling re-
alizations has a continuous~and nonzero! component forq
between thed functions at6qEA , for 0,T,Tc . ~4! The
locations of thed functions in~2! have an ultrametric struc
ture. In Sec. IV, we examine the meaning of the Parisi p
ture applied to the EA model.
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IV. STANDARD SK PICTURE

If the Parisi solution of the SK model describes the nat
of the spin glass phase in realistic spin glasses, as freque
supposed@6,13,14,33,52–55,57–61#, what should be its ther
modynamic properties? A description along these lines
emerged in the literature~see, for example, Refs
@29,55,59,61,72#! over the past decade and a half. This s
nario, which we have called the ‘‘standard SK picture’’@26#,
is the most straightforward extrapolation of the main featu
of the Parisi solution to infinite volume spin glasses in fin
dimension, and is presented in this section as a precise
scription of the usual presentations in the literature~see, for
example, Refs.@2,29,42,72#!.

As discussed in Sec. II, the meaning of pure states in
EA model~and other realistic models! is clear—they are ex-
tremal infinite volume Gibbs states@i.e., thermodynamic
states which cannot be decomposed as in Eq.~5!; equiva-
lently, they satisfy the clustering property as in Eq.~7!#. It is
natural then to replace the approximate relation Eq.~12! with
an equality

rJ~s!5(
a

WJ
a rJ

a ~s!, ~15!

where rJ (s) is an infinite volume mixed Gibbs state~at
fixed temperature! for a particular coupling realizationJ,
and therJ

a are pure states for thatJ. There may be many
such mixed states, so we specify the one above as that
duced in some natural way~to be specified later! by a se-
quence asL→` of finite volume Gibbs distributions on
cubesLL with boundary conditions, such as periodic, n
depending on the coupling realization. Periodic bound
conditions minimize, in some sense, the effect of a bound
and are thus a natural analog to the lack of boundary co
tions in the SK model. It should be noted, however, th
there is some possibility of different behavior for periodic
opposed to, say, free boundary conditions@40#.

We digress momentarily to discuss briefly two importa
points. The first is that, while the notion of an infinite volum
~pure or mixed! state is well-defined for nearest-neighb
models, it is less so for systems with very long-ranged in
actions, such as Ruderman-Kittel-Kasiya-Yosida. Our ar
ments that are based on the homogeneity of the disor
presented below, will still apply to these systems, but t
point should be kept in mind.

The second point is that it is necessary thatrJ , obtained
from the natural limit procedure discussed above, be defi
for almost everyJ chosen from the disorder distributionn
~and be measurable in its dependence onJ—see Sec. II!.
While this may seem like a technical point of little physic
consequence, it actually plays a crucial role in any therm
dynamic treatment of systems with many competing sta
@25,26,28#. We will come back to this point in a little while

Returning to the standard SK picture, we note that
other equations in Sec. III are similarly replaced with th
exact EA counterparts. The overlap random variable
comes

Q5 lim
L→`

uLLu21 (
xPLL

sxsx8, ~16!
e
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wheres and s8 are chosen, similarly to before, from th
product distributionrJ (s)rJ (s8). If s is drawn fromrJ

a

ands8 from rJ
g , then it follows that the overlap is the con

stant

qJ
ag5 lim

L→`

uLLu21 (
xPLL

^sx&
a^sx&

g. ~17!

The probability distributionPJ (q) of Q is therefore given
by

PJ ~q!5(
a,g

WJ
aWJ

gd~q2qJ
ag!. ~18!

So this SK picture for the EA model~or realistic spin
glasses in general! includes the same four features presen
at the end of Sec. III~except the word ‘‘approximate’’ in the
second of these should be deleted!; their meanings are now
precise. There are other elements of the standard
picture—e.g., energy gaps of order one separating
lowest-lying states in any large volume and an exponenti
increasing density at the lowest energies—but these will
play a central role in what follows.

We turn now to the question of whether the standard
picture can be valid in any dimension or at any temperatu
This question has two parts.

First, does there exist some natural construction wh
begins with the finite-volume Gibbs statesrJ,b

(L) (s) of Eq.
~4!, takes L→`, and ends with a~non-self-averaged!
infinite-volume state,rJ,b ~possibly mixed!, and its accom-
panying overlap distributionPJ (q)? By ‘‘natural’’ we mean
not only the usual sense of the term but also that the c
struction result in a thermodynamic staterJ for almost every
J. In particular, we want the limit procedure~e.g., choice of
boundary conditions or sequence of cube sizes! to be chosen
independently of any specificJ. This will help guarantee
that theJ dependence generated by this procedure is m
surable, and therefore that averages~e.g., of the moments o
Q) can be taken with respect to the disorder distribution. W
also emphasize that we are interested only in proced
which result in non-self-averaged infinite-volume states~i.e.,
at least some correlation functions computed within suc
state depend onJ ). Recall that for the SK model, the ver
notion of such aJ-dependent infinite-volume state is un
clear. Second, can such aPJ (q) exhibit all the essentia
features of the SK picture, including those described by
four features above?

The answers to these two parts, given in@25# are, respec-
tively, yes and no. We will explain our construction ofrJ
~which is somewhat technical! and thus the ‘‘yes’’ answer to
part one later in this section. Meanwhile, we mention o
crucial feature of the resultingrJ , which plays a key role in
the ‘‘no’’ to part two. That feature is translation covarianc
i.e., under the translation ofJ to J a, whereJxy

a 5Jx1a,y1a

for eachJxy , rJ transforms so that

rJ a~sx1
5s1 , . . . ,sxm

5sm!

5rJ ~sx12a5s1 , . . . ,sxm2a5sm!. ~19!
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55 5201METASTATE APPROACH TO THERMODYNAMIC CHAOS
The conceptual significance of translation covariance is
the mapping fromJ to rJ , being a natural one, should no
~and in our construction does not! depend on the choice of a
origin. It also implies the technical conclusion@49,50# that
this procedure leads to a limiting infinite-volume overlap d
tribution functionPJ (q), which exists for almost everyJ
and depends measurably onJ ~guaranteeing that averages
q-dependent functions can be taken over the couplings!. To
begin our answer to the second part of the question, we
what the translation covariance ofrJ implies aboutPJ .

By translation covariance ofrJ , the overlap random vari
ableQJ a has the same distribution as the random varia
QJ

2a , where

QJ
2a[ lim

L→`

uLLu21 (
xPLL

sx2asx2a8 5QJ . ~20!

Thus the overlap distribution functionPJ a5PJ for almost
everyJ and allaPZd; i.e., PJ is translation-invariant.

As in the case of the translation covariance ofrJ , the
translation invariance ofPJ has the conceptual significanc
that a natural object like the Parisi order parameter distri
tion should not~and in our construction does not! depend on
the choice of an origin. But it also has the very importa
technical ~and physical! significance thatPJ must be self-
averagedbecause, as already noted in Sec. II~in the discus-
sion on the number of pure states!, a ~measurable!
translation-invariant function of random variables whose d
tribution is translation-ergodic is a constant almost surely,
the ergodic theorem.~We remark that the fact that we ar
dealing with a function ofJ whose value for eachJ is an
entire distribution is not a problem, since any particular m
ment of that distribution is a real-valued function ofJ.!

This answers the second part of our question: the ove
distribution functionPJ (q)5P(q) is independent ofJ. It
therefore does not exhibit non-self-averaging@property~1!#,
and can exhibitat mostone of the two properties~2! and~3!
discussed at the end of Sec. III. While property~2! @discrete-
ness of the locations of thed functions which appear in
P(q)# is not rigorously ruled out, it now seems like a high
implausible possibility, since it would imply that the loca
tions ~and weights! of thed functions~and consequently the
values ofq which correspond tono overlap value! are all
independent ofJ. If property ~2! is then eliminated as a
realistic possibility, then one can also rule out property~4! of
the SK picture, i.e., ultrametricity of all of the pure sta
overlaps for fixedJ @25#.

Consequently, we have proved thatthe standard SK pic-
ture cannot be valid in any dimension and at any tempe
ture. This result goes beyond our specific construction of
Gibbs staterJ and overlap distributionPJ , since any
infinite-volume translation-invariant overlap distributio
function would be self-averaging. It would be quite pecul
if the overlap distribution depended on the choice of orig
of the coordinate system, and we therefore regard the p
erty of translation-invariance forPJ ~or translation covari-
ance forrJ) as not specific to our particular construction.

Our conclusion is thatnearest-neighbor (and in genera
realistic) spin glasses exhibit non-mean-field behavior,
cause for those systems one can construct a non-
at
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averaged Gibbs staterJ whose overlap distribution PJ is
self-averaged.The standard SK picture therefore cannot d
scribe realistic spin glasses atanydimension or temperature
It is important to note that these conclusions apply to
thermodynamicsof spin glasses. What might or might no
occur in finite volumes involves several subtle issues a
will be discussed in Sec. VII.

While the demise of the standard SK picture is interest
in itself, and has important consequences for our understa
ing of spin glasses, the methods used above and in our
struction ofrJ lead to perhaps more significant conclusio
that might affect our thinking on not only spin glasses, b
disordered—and more widely, inhomogeneous—system
a deeper level. Indeed, these methods indicate a path
general approach for studying the thermodynamics of s
tems with many pure states. One consequence will be
emergence of a replacement for the standard SK pictur
picture which retains some mean-field flavor. The gene
formulation introduces several interesting concepts, am
them replica nonindependence and a definition of non-s
averaging, and relates them to replica symmetry break
overlaps, and chaotic size dependence. The unifying them
the concept of the metastate, which is introduced in Sec
Before that, we complete this section with a discussion
how we construct our thermodynamic staterJ .

We begin by noting that we cannot simply fixJ and take
an ordinary limit ~i.e., through a sequence of cube sizesL
chosen independently ofJ) of the finite cube, periodic b.c
staterJ,b

(L) , as L→`. Unlike, say, thed52 homogeneous
Ising ferromagnet, where such a limit exists~and equals
1
2r

11 1
2r

2) by spin flip symmetry considerations~and the
fact thatr1 andr2 are the only pure states@73,74#!, there is
no guarantee for a spin glass that there is a well-defi
limit. ~In fact, if such a limitdoesexist for the spin glass, one
can then prove@28# that thesamelimiting state is obtained
through the use ofantiperiodicboundary conditions—a fea
ture that already seems incompatible with a SK picture.!

It is true that one can easily prove, using compactn
arguments, convergence alongsubsequencesof L ’s for each
J. But these subsequences should~in a SK picture! be J
dependent. The inconsistency between the existence of m
pure states and the existence of a thermodynamic limit fo
sequence of finite-volume Gibbs states using coupli
independent boundary conditions~such as periodic! and cube
sizes has serious consequences not only for spin glasse
also for systems in general with many competing states
suggests in the present case that, if many pure states e
such a sequence of finite-volume Gibbs state exhibitschaotic
size dependence~CSD! and does not converge to a limit. Th
convergent (J-dependent! subsequences would then giv
rise to different ~non-self-averaged! pure states or mixed
states with no way to make a~measurable! choice of a limit
state for eachJ.

There is, however, a natural limit procedure which do
give rise to an infinite-volume Gibbs staterJ , while avoid-
ing such difficulties. Here, one considers thejoint distribu-
tion on the spinsand the couplings; i.e., one considers th
distributionn(J )3rJ,b

(L) on the periodic cubeLL @25#. Then
~again using compactness arguments! some subsequence o
L ’s converges to a limiting infinite-volume joint distributio
m(J,s). From this joint distribution,rJ results when the
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5202 55C. M. NEWMAN AND D. L. STEIN
spin configurations are chosen conditioned onJ, which is
chosen fromn(J) in the usual way; i.e.,rJ is determined by
the identitym(J,s)5n(J )3rJ (s). The important differ-
ence with the earlier limit procedure is that this one is va
for almost everyJ, i.e., the subsequence ofL ’s is J inde-
pendent. ~The discussion so far has been based on m
ematically rigorous arguments. At this point however,
would suggest—but cannot rigorously prove—that it is pro
ably the case that using a subsequence ofL ’s is not needed
for convergence, because the use of a joint distribution
J ands should avoid CSD.! A proof that the resulting lim-
iting distribution is indeed a Gibbs state may be found
@27,49,50#. We note that such joint distribution limits wer
considered, implicitly or explicitly, in Refs.@75–78#.

To obtain a clearer idea of this construction, consider
following procedure. Start with three cubes~labeleda, b,
andc), all centered at the origin, with volumesLa

d , Lb
d , and

Lc
d , with 1!La!Lb!Lc . On the outermost box we impos

periodic boundary conditions. The couplings are fixed ins
the intermediate box~and averaged over between the inte
mediate and largest box!; and in the innermost box the ove
lap computation is done. The average over couplings
tween the intermediate and large boxes is equivalent to
average over many boundary conditions~consistent with the
outer periodic b.c.! on the boundary of the intermediate bo

Now let Lc→` while keepingLa andLb fixed; then let
Lb→`, while still keepingLa fixed. This sends our ‘‘aver-
age over boundary conditions’’ off to infinity, and results
an infinite-volumerJ which is conditioned onall of the
couplings and is therefore non-self-averaged. Finally,
La→`; this gives finally the overlap distributionPJ (q) be-
tween infinite-volume pure states appearing in therJ .

It is important to note that any analog of this procedu
for the SK model will result in an infinite-spin Gibbs stat
but a trivial one; i.e., it will already be self-averaged a
therefore uninteresting. This is because fixing only finite
many couplings in the SK model and averaging over
remainder is equivalent to averaging overall of the cou-
plings when N→`. This difference between finite
dimensional and mean-field models is crucial.

We conclude by pointing out why our construction~for
the EA model! of the limiting joint distributionm(J,s)
yields translation covariance forrJ . This is so because tak
ing periodic b.c.’s on the cubeLL really means that the
couplings and spins are defined on a~discrete! torus of size
L, with a finite-volume joint distribution invariant unde
torus translations. This implies that any~subsequence! limit
joint distribution is invariant under translations ofZd, which
in turn implies that the infinite-volume Gibbs staterJ is
translation covariant. In Sec. V, we go beyond the constr
tion of a single limiting thermodynamic state by introducin
the notion of metastates.

V. CHAOTIC SIZE DEPENDENCE AND METASTATES

In this section we will describe an approach, introduced
Ref. @26#, to studying inhomogeneous and other syste
with many competing pure states. This approach is base
an analogy to chaotic dynamical systems, and involves
replacement of the study of a single thermodynamic s
with anensembleof ~pure or mixed! thermodynamic states
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In Sec. IV we were forced~by chaotic size dependence! to
replace a simple sequence of states on cubes with peri
boundary conditions with a more complicated seque
which involved an averaging over boundary conditions, f
lowed by sending this average off to infinity. This avoid
chaotic size dependence~at least for aJ-independent subse
quence of volumes, but probably altogether!. In this section,
we will pursue the opposite strategy—we will forego the e
run around CSD, and instead use it to gather maximal in
mation about the disordered system. The price will be
abandon the usual procedure of constructing and studyin
single infinite volume Gibbs staterJ .

The central observation behind this is that, at any~large!
fixed L ~and with periodic boundary conditions!, the exis-
tence of multiple pure states should generally require an
proximate decomposition as in Eq.~12! @see also Eq.~15!#:

rJ
~L !~s!'(

a
WJ,L

a rJ
a ~s!. ~21!

For eachL, the pure states appearing with the largest weig
in the sum will be those whose configurations within t
volume of sizeL are best adapted to the boundary conditio
Chaotic size dependence requires that the pure states
weights appearing within this decomposition vary pers
tently asL is increased~though it says nothing about the ra
at which this variation occurs!.

The analogy with the chaotic orbit of a dynamical syste
follows from the identification of cube sizeL with time t
along such an orbit. A~chaotic! dynamical system’s trajec
tory will appear random if one considers the sequence
points along its orbit, but one can describe its long-time
havior by studying the appropriate probability measurekdyn
on state space. That is, one can construct a histogram
times t1 ,t2 , . . . ,tN, with N increasing to infinity, and study
the fraction of times spent by the orbit in different parts
state space~in a continuous space this would require brea
ing the space up into bins!. TheN→` limit of this process
yields a well-definedkdyn.

Similarly, we consider at fixedJ a histogram of finite
volume Gibbs statesrJ

(L1) ,rJ
(L2) , . . . ,rJ

(LN)→kJ asN→`.
The information contained inkJ provides the fraction of
cube sizes which the system spends in different~possibly
mixed! thermodynamic statesG. We refer tokJ , which is a
probability measure on thermodynamic statesG at fixedJ,
as themetastate.

To simplify notation, it will be assumed in the ensuin
discussion that convergence to the metastate is valid with
need for a subsequence ofN’s or a subsequence
L1 ,L2 , . . . of the cube sizes. We point out however th
Külske has studied some models, e.g. the Curie-We
random-field model, in which choosing a sparse subseque
of sizes is necessary for the empirical distribution~i.e., the
histogram! to converge~for almost every disorder configura
tion! to the metastate. We will not discuss these issues h
but refer the reader to Ref.@79# for details.

Our empirical distribution approach to construction of
metastate, based on CSD for fixedJ, constructskJ as the
limit of kJ

(L) , a type of microcanonical ensemble in whic
each of the finite-volume statesrJ

(1) ,rJ
(2) , . . . ,rJ

(L) has
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weight L21. This limit can be understood in the followin
way: consider a~nice! function on the states, such as th
correlation ^sxsy&(•); i.e., ^sxsy&(G) is this correlation
computed using a particular infinite-volume Gibbs distrib
tion G, and ^sxsy&(r

(L)) is the same correlation compute
using the finite-volume Gibbs distributionr (L) ~we suppress
the J index here, which is understood!. If @•#k denotes an
average of a state-dependent function over themetastate
~i.e., the function of each state is weighted using the wei
of the corresponding state within the metastate!, then

lim
L→`

~1/L !(
l51

L

^sxsy&~r~ l !!5@^sxsy&~G!#k . ~22!

Furthermore, such an equation similarly holds for any ot
~nice! function of finitely many correlations~regarded as a
function on states!.

There is another approach to constructing the metas
due to Aizenman and Wehr@27#, which uses the randomnes
of the couplings directly, in a manner similar to that of t
construction ofrJ in Sec. IV. There we studied the limitin
joint distributionm(J,s) of the random pairs (J,s (L)) dis-
tributed for finiteL by n(J )3rJ

(L) . Here one considers in
stead the random pair (J,rJ(L)) at finite L. We will not dis-
cuss various technicalities associated with this meth
details can be found in Refs.@27,49,50#. We will simply note
here that the two approaches~at the very least along commo
J-independent subsequences! yield the same limiting met-
astate.

The metastatekJ contains all of the thermodynamic in
formation about a system, in this case the EA spin glass w
coupling realizationJ. As such, it contains far more infor
mation than the single thermodynamic staterJ generated by
the construction of Sec. IV~or any other single state!. In fact,
it can be seen@27,49,50# that therJ of Sec. IV is theaverage
thermodynamic state of the ensemble of states within
metastatekJ , in the following sense: consider any spin co
relation in the staterJ , e.g.,^sx1

, . . . ,sxn
&rJ

. This equals
the average~over the metastate! of the correlation function of
the same set of spins overall thermodynamic statesG of the
ensemble. So ifkJ(G)dG denotes~formally! the probability
of appearance of the states within a region of state sp
centered onG of state-space volumedG, then

^sx1
•••sxn

&rJ
5@^sx1

•••sxn
&G#kJ

5E ^sx1
•••sxn

&GkJ~G!dG, ~23!

and similarly for all other correlation functions.
We see that one problem with the standard SK pict

~and with other standard thermodynamic treatments of s
tems with many competing states! is that the staterJ ~or any
other single state, pure or mixed! is simply not a rich enough
description of theL→` behavior of a thermodynamic sys
tem where CSD occurs. In these approaches, one is in e
replacing with a single average all of the information co
tained in an entire distribution.

To illustrate the nature of the metastate, we now pres
some simple examples. The first is the trivial case of a sin
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pure phase, e.g., the paramagnetic state. Then limL→`rJ
(L)

5rJ is a single pure state, there is no CSD, a
kJ(G)5d(G2rJ).

In the second example we suppose that the scaling-dro
picture is correct, so that only two pure statesrJ8 and rJ9
exist, related by a global spin flip. Then~as in thed52
homogeneous Ising ferromagnet with periodic or free b.c!

lim
L→`

rJ
~L !5 1

2 rJ81 1
2 rJ9 , ~24!

and again there would be no CSD. Indeed, the analogy h
is to a dynamical system with a simple fixed point. The m
astate is simply

kJ~G!5d~G2@ 1
2rJ81 1

2 rJ9 # !. ~25!

However, we can introduce a slight variation of this pr
cedure to illustrate the potential sensitivity of the metast
to the boundary conditions used in the limiting procedu
Suppose that, instead of periodic boundary conditions
eachL, we usefixedboundary conditions, e.g., all spins a
11 on the boundary of eachLd cube appearing in the se
quence. This of course breaks the spin flip symmetry, and
someL ’s the staterJ8 will be preferred, while others will
preferrJ9 , depending in each case on whether the sum al
the boundary of̂sx&rJ8

is ~substantially! positive or negative.

~There may be occasionalL ’s where the preference for eac
state is roughly equal, but this should be a negligible fract
of L ’s and so would not show up in the limiting histogra
which yields the metastate.!

So in this case we obtain chaotic size dependence, a
of a trivial sort: rJ

(L)'rJ8 for roughly half of theL ’s, and
rJ
(L)'rJ9 for the remainder. The metastate is now

kJ~G!5 1
2 d~G2rJ8 !1 1

2 d~G2rJ9 !. ~26!

Here the metastate is a rough analog to thekdyn obtained
from a discrete time dynamical system with an attract
orbit of period 2.

This is our first example in which the metastate is n
simply a d function on thermodynamic states. We call th
behaviordispersal of the metastate, and it is intimately con-
nected with CSD. From this and the previous example
should be clear that dispersal of the metastate is quite dif
ent from the mere existence of multiple states; while
existence of more than one state is necessary for dispers
occur, it by no means guarantees it.

The above discussion leads naturally to the following p
sibility, first proposed in@26# as a possible candidate for th
EA metastate, based in turn upon earlier work in@8#. Sup-
pose that the EA spin glass has many pure states in somd
and at someb, but unlike in the mean-field picture eac
volume ‘‘sees’’ essentially only one pair at a time. In oth
words, for everyL ~and once again using periodic bounda
conditions!, one finds that

rJ
~L !' 1

2 rJ
aL1 1

2 rJ
2aL ~27!

where2a refers to the global spin flip of pure statea. In
any volume, this looks very much like the droplet-scali
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5204 55C. M. NEWMAN AND D. L. STEIN
picture, but its thermodynamic behavior is considerably d
ferent: there are infinitely many pure states and which p
appears in any finite volume depends chaotically onL. Un-
like the droplet-scaling picture, this possibility exhibits CS
and dispersal of the metastate. In this ‘‘chaotic pairs’’ pictu
the ~periodic b.c.! metastate is dispersed over~infinitely!
manyG ’s, of the formG5Ga5 1

2rJ
a1 1

2rJ
2a .

It is interesting to note that just this type of behavior
observed for the many ground states of a simple highly
ordered spin glass model in high dimension~@8#; see also
@80#!. ~Indeed, for the EA model itself, we would expect th
type of behavior to occur atT50 if infinitely many ground
states exist.!

One can study metastates in models more complica
than those above, but still simpler than the EA spin gla
and a discussion of some of these~e.g., random-field Ising
models, the highly disordered spin glass of Ref.@8#, and the
homogeneousXYmodel with random b.c.’s! appears in@49#,
to which the interested reader is referred for details. At t
point, however, we will proceed and use the ideas introdu
in this section to revisit the concepts of replica symme
breaking and non-self-averaging, and will introduce so
concepts such as replica nonindependence. The idea o
metastate will enable us to relate, explain, and unify th
concepts. We will then return to the EA model and discu
the remaining possibilities for its metastate, and therefore
low-temperature thermodynamic structure.

VI. REPLICA SYMMETRY BREAKING,
REPLICA NONINDEPENDENCE,
AND OVERLAP DISTRIBUTIONS

In Sec. IV we discussed the Parisi order parameter dis
butionPJ(q) in the standard SK picture, whose counterp
PJ,N(q) for the SK model was successful in describi
mean-field spin glass ordering. In the standard SK mo
PJ(q) is constructed as the distribution of the overlap ra
dom variableQ, which in turn is constructed according t
Eq. ~16!, where the spin configurationss ands8 are chosen
from the product distributionrJ (s)rJ (s8); i.e., each is
chosen independently from the same~thermodynamic! state
rJ .

But now, given the metastate point of view discussed
Sec. V, we know that the staterJ (s) is really the average
over the metastate, in the sense described by Eq.~23!.
Equivalently,

rJ~s!5E G~s!kJ ~G!dG. ~28!

So each time a pair of spin configurations, say (s1,s2), is
chosen fromrJ (s

1)rJ (s
2), an independentG is used for

each configuration. That is,s1 is chosen fromG1, ands2

from G2 with (G1,G2) chosen fromkJ (G
1)kJ (G

2); G1 and
G2 will in general be distinct if the metastate is disperse
This in turn means in essence@see Eq.~22!# that the spin
configurations1 is chosen using the distributionrJ

(L1) and

s2 from rJ
(L2) , with L1ÞL2. It seems more natural instead

take the two replicas from the same distribution, i.e., fo
single L, and therefore from thesameG. As Guerra has
pointed out@81#, this order of operations~in which replicas
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are takenbefore L→`) could yield a different result than
that obtained by first lettingL→` to obtain an infinite vol-
ume staterJ and then taking replicas. The noncommutativ
of these operations will be shown to follow from a pheno
enon we callreplica nonindependence, which is not the same
as replica symmetry breaking, as will be seen below. B
first we will explore the meaning of this way of taking rep
licas.

Taking replicas first~i.e., from the sameL) really means,
in terms of the metastate, that they are being taken from
sameG, i.e., from G(s1)G(s2) for someG chosen from
kJ (G). ~Without metastates, it would be difficult to assign
clear meaning to this statement.! Forn replicas~wheren can
be any positive integer, or infinity! we taken uncoupled~but
identical! Hamiltonians ~and boundary conditions! in the
cube Ld. We then use for finiteL the product measure
rJ
n(L)5rJ

(L)(s1(L))rJ
(L)(s2(L))•••rJ

(L)(sn(L)). The limiting
joint distribution for (J,s1(L),s2(L), . . . ,sn(L)) is then of
the formn(J )rJ

n (s1,s2, . . . ,sn) for somerJ
n that we call

the infinite-volumen-replica measure.~The mathematical
analysis of this limit procedure is essentially the same as
discussed forn51 in Sec. IV above and, with more detail, i
@49,50#.! In this approach, replicas in the infinite volum
limit are described byG(s1)G(s2)••• with G distributed by
kJ ; replicas in finite volume are taken from thesame L, and
kJ describes the sampling of states asL varies.

A crucial point, as emphasized by Guerra@81#, is that in
the infinite-volume replica measurerJ

n , the replicas need no
be independent, although they of courseare independent in
the finite-volume measurerJ

n(L) . The replicas in infinite vol-
ume can be thought of as coupled through ‘‘boundary c
ditions at infinity.’’

If this occurs, we say@26# that the system displays replic
nonindependence~RNI!. The presence of RNI means th
rJ
n , which is a thermodynamic state for the uncoupled re
lica Hamiltonians, isnot simply equal to the product of the
individual Gibbs statesrJ (s

i). In general, we have from the
above description that

rJ
n~s1,s2, . . . ,sn!5E @G~s1!G~s2!•••G~sn!#kJ ~G!dG.

~29!

This makes it clear that RNI is equivalent to dispersal of
metastate. If the metastate is nondispersed, its weight is
centrated entirely on a single thermodynamic state, sokJ is a
delta function, and the RHS of Eq.~29! reduces to a simple
product of Gibbs states~each of which is the single state o
which the metastate is concentrated!. Otherwise, the produc
decomposition ofrJ

n is as a mixture overkJ . This also
shows that RNI is equivalent to the noninterchangeability
the operations of taking replicas and the thermodyna
limit.

In Ref. @26#, these points were explained using the idea
‘‘metacorrelations.’’ Just as the usual correlatio
^s i1

•••s im
&G are moments~in this case, of orderm) charac-

terizing the thermodynamic stateG, metacorrelations are mo
ments that characterize the metastatek. I.e., they are the
averages~over the metastate! of functionsg(G) on the states
that are monomials~of orderm) in the correlations~of vary-
ing orders!:
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@g~G!#k5@^sA1
&G•••^sAm

&G#k , ~30!

wheresA denotess i1
•••s i k

for the setA5$ i 1 , . . . ,i k%. As
noted in Ref.@26#, restriction to metacorrelations of orde
m51 yields rJ , to m<2 yields the two-replica measur
rJ
2 (s1,s2), which corresponds to ‘‘integrating out’’ all the
other replicas inrJ

` , and so on. The measurerJ
` therefore

not only contains information about arbitrarily many rep
cas, but since it determines all the metacorrelations, it a
contains all information about the metastatekJ .

Replica symmetry breaking~RSB! occurs when indi-
vidual thermodynamic statesG ~chosen fromkJ) are mix-
tures of multiple pure states, so that even, when restricte
a singleG, replicas can come from different pure states,
the spirit of the Parisi ansatz. This definition allows for wh
we call trivial RSB~e.g., in a two-state picture!, but corre-
sponds to the more familiar meaning when many pure st
are present inG. The presence of RSB means that when o
decomposes each mixedG in Eq. ~29! into pure states, then
the permutation symmetry between different replicas is
in each of the products where a pure state is chosen for
replica. It follows that RSB and RNI are distinct phenome
and either can occur without the other.

Although we have a new way of constructing a repli
measure, we can still take overlaps in the usual way,
according to Eq.~16!. The distribution of an overlapQ,
though, depends on hows ands8 are chosen. Because o
the possibility of RNI, we no longer take overlaps~between
one or more pairs of replicas! from the product measur
rJ (s

1)rJ (s
2)•••, but instead from the more suitable re

lica measurerJ
` . Because of this, the nature of the overla

changes. For example, the distribution of a single over
Q is no longer thePJ (q) obtained fromrJ (s)rJ (s8), but
rather is*PG(q)kJ (G)dG, wherePG(q) denotes the over
lap distribution obtained fromG(s)G(s8). WhenkJ is dis-
persed,PG may or may not depend on theG chosen from
kJ . ~It does not in the chaotic pairs picture but does in
nonstandard SK picture discussed below.! Information on
this dependence is contained in the overall ‘‘overlap str
ture,’’ by which we mean the joint distribution of all over
lapsQi j between all pairs of replicas (s i ,s j ) from rJ

` . This
~possible! dependence onG is significant because, as in ou
analysis above of the standard SK picture,the overlap struc-
ture still does not depend onJ, by essentially the same a
guments using translation invariance of the overlaps
translation ergodicity of the coupling distributionn(J).
More specifically, regardingPG as random because of it
dependence onG for fixed J, the probability of appearanc
of a particular set of weightsandcorresponding locations o
the overlapd functions will not depend onJ. ~Here, we are
describing the situation, discussed at length in Sec. VII of
paper, in whichPG , for eachG, has an SK-type form.!

In realistic systems, thermodynamic state observables
depend on the bulk couplings and/or on the couplings
infinity. Thus we observe thatthere are two distinct types o
dependence: (i) onJ, and (ii) on the stateG within the
metastatek for fixedJ. We have seen that replica overla
cannot have the first type of dependence, but can in princ
have the second kind. In that case, if one examines the s
~finite! volume for two different coupling realizations,
o
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could happen that two different sets of weights and over
locations are seen~in the approximate sense correspondi
to the fact that we’re restricted here to finite volumes, so th
e.g., the finite-volume overlap distributionPJ

(L) is not a sum
of exactd functions!. It is logically possible that in such a
case, fluctuations inPJ

(L) persist for arbitrarily largeL. From
our previous discussions, however, it would beincorrect to
conclude that there is an infinite-volume overlap distributi
that is non-self-averaging~i.e., that depends onJ). Rather, it
would imply that the limit limL→`PJ

(L) does not exist; i.e.,
that PJ

(L) exhibits chaotic size dependence.~See the Appen-
dix for a discussion of the distinctions among differing co
structions of overlap distributions.!

Our conclusion is that if overlap fluctuations~due to cou-
pling dependence! do not vanish asL→` @82#, this doesnot
mean that the standard SK picture of overlap non-s
averaging holds; rather, it is a signal that thesecondkind of
dependence holds for infinite volume.

With the approach outlined above, a replacement for
standard SK picture suggests itself. This replacement at
may seem very unusual and different from previous und
standings of thermodynamic spin glass structure, but it f
out naturally from the ideas presented in this and in Sec
In Sec. VII we ask how can at least some of the famil
characteristics of the Parisi version of spin glass ordering
retained in realistic spin glasses? We will see that the ‘‘ma
mal’’ mean-field picture allowed, given our understanding
metastates and their consequences, has an intricate and
thermodynamic structure.

VII. NONSTANDARD SK PICTURE

We saw in Sec. IV that the familiar thermodynamic pi
ture usually associated with the Parisi ansatz applied to
EA model, which we called the standard SK picture, cou
not be valid in any dimension and at any temperature. A
thermodynamic theory of realistic spin glasses will diff
considerably from this picture. The question then is whet
and how any aspects of mean-field behavior can survive
such a theory. We now address this question.

We begin by asking what a maximal mean-field pictu
would look like infinite volume. There have been a numb
of numerical simulations~e.g., @42,61,72#! which appear to
see a Parisi-like structure of finite-volume states, i.e.,
appearance of several states with nonnegligible weight, s
eral ~approximate! d function overlaps whose positions de
pend on coupling realization, and a Parisi-likeP(q) ~i.e., d
functions at6qEA connected by a continuous part! after av-
eraging over the couplings.~See, however,@43# for a criti-
cism of @42#.! We will not attempt to resolve controversie
associated with these or other simulations, nor will w
speculate whether, if correct, these results persist for la
volumes. Rather, we askif such results should hold for arb
trarily large volumes, what does that imply about the th
modynamics of spin glasses, given that the usual thermo
namic extrapolation of these finite-volume results~i.e., the
standard SK picture! is incorrect?

We will see that the metastate approach allows us to c
struct such a thermodynamic scenario, which we call
nonstandard SK picture. This picture, or one closely relate
to it, must describe the thermodynamics of realistic s
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5206 55C. M. NEWMAN AND D. L. STEIN
glasses if the abovefinite-volume picture is correct. That is
the nonstandard SK picture allows for properties~1!–~4! ap-
pearing at the end of Sec. III~or more precisely, finite-
volume versions of these properties! to hold in any fixed
finite volume~with, e.g., periodic boundary conditions!. It is
therefore a maximal mean-field picture, as promised at
end of Sec. VI. However, the thermodynamics to which
gives rise is unconventional. It displays RSB and R
~equivalently, CSD! and a type of non-self-averaging, su
ably redefined~as described in Sec. VI!. It does not have the
features commonly thought of as associated with the Pa
ansatz, e.g., ultrametricity of all of the pure states@56,57#,
but displays some of its properties in a more limited fashi

As a starting point, then, we require that in any~large!
finite volume, the Gibbs state is an approximate decomp
tion over many pure states,

rJ
~L !~s!'(

a
WJ

a,LrJ
a ~s!, ~31!

where a few states dominate the sum. From the metas
point of view, this implies that eachG ~chosen fromkJ) is a
mixed state with a nontrivial decomposition into pure stat
namely,

G5(
a

WG
arJ

a ~s!, ~32!

and this decomposition is discrete but with many nonz
weightsWG

a @83#.
In order that this scenario correspond to the usual exp

tations of the Parisi-SK picture infinitevolumes~and at fixed
J), we require that the fixed-G overlap distribution

PG~q!5(
a,g

WG
aWG

gd~q2qag! ~33!

display the form consistent with property~2! listed at the end
of Sec. III; that is, a countable sum of manyd functions.
@Note that the occurrence of many~distinct! qag’s is an ad-
ditional requirement, and does not follow automatically fro
Eq. ~32!.# The metastate must be an ensemble of many s
G ’s ~in fact, a continuum of them, as we explain below!,
each of which yields a pair ofd functions at6qEA , but with
the locations of the remainingd functions beingG depen-
dent. We further require that the locations of thed functions
within a specificPG(q) be ultrametric.

The above requirements are consistent with proper
~1!–~4! of Sec. III holding for any finite volume, including
~conventional! non-self-averaging for arbitrarily largeL.
However, instead of the straightforward extrapolation to
finite volumes characteristic of the standard SK picture,
thermodynamic properties of this nonstandard SK picture
considerably different. We now discuss what these proper
are.

The crucial conceptual point is that the translation co
riance of the metastatekJ still requires that the resulting
ensemble of overlap distributions is independent ofJ. The
metastate in this picture must be an ensemble of manyG ’s ,
with a singleG appearing in any fixed cubeLd ~with, e.g.,
periodic boundary conditions!. The dependence onG ~asG
e
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varies within the metastate ensemble! is the new sort of non-
self-averaging discussed at the end of Sec. VI. It is clear t
that this picture must have both nontrivial RSB~because
eachG is a sum over many pure states!, and CSD~and RNI!
since the metastate is dispersed.

Finally, we require that the~averaged! Parisi order param-
eter P(q) have the usual form, that is, twod functions at
6qEA , connected by a continuous component with nonz
weight everywhere in between; however, the averagingmust
now be done over the statesG within the metastatekJ , all at
fixed J, rather than overJ itself:

P~q!5@PG~q!#kJ
5E PG~q!kJ ~G!dG. ~34!

In order for this requirement to be valid along with discre
ness of the individualPG’s, it must be that there is acon-
tinuum of G ’s in the metastate ensemble. So we have
placed dependence on coupling realizationJ with
dependence on the stateG within the metastate forfixedJ.

We see that the nonstandard SK picture differs from
usual mean-field picture in several important respects. On
the lack of dependence of overlap distributions onJ, and the
replacement of the usual sort of non-self-averaging with
concept of dependence on states within the metastate.
other important difference is that, in the nonstandard SK p
ture, a continuum of pure statesand their overlaps must be
present; therefore,ultrametricity would not hold in genera
among any three pure states chosen at fixedJ, unlike in the
standard SK picture~see, for example,@56,57#!. ~The argu-
ment supporting this conclusion is presented in Ref.@25#.!
Rather, the pure states at fixedJ are split up into~a con-
tinuum of! families, where each family consists of those pu
states occuring in the decomposition of a particularG, and
only within each such family would ultrametricity hold.

We have presented the nonstandard SK picture as a
placement for the more standard mean-field picture; if re
istic spin glasses display any mean-field features, somet
like it must occur. However, this leaves open the question
what actually happens in realistic spin glasses. In particu
does the nonstandard SK picture actually occur? It turns
to have an important covariance property which may prov
a clue.

For specificity, consider the EA model with a~mean zero,
variance 1! Gaussian coupling distribution. Suppose that
change afinite number of couplings. The metastatekJ (G),
in addition to translation covariance, is also covariant w
respect to this change@27#; that is, the ensemble transform
~as would any probability measure! under a change of vari
ablesG→G8. Here,G8 is the thermodynamic state with co
relationŝ sA&G85^sAe

2bDH&G /^e
2bDH&G , whereDH is the

change in the Hamiltonian. Under this change of variab
pure states remain pure and their overlaps do not cha
However, the weights which appear in Eq.~33! will in gen-
eral change. Nevertheless, the overall overlap structure~i.e.,
the probability of appearance of a given set of weights a
overlap locations! must remain invariant.

We propose@49# this covariance property under couplin
changes as an appropriate analog to that of of dynam
systems having a probability measure invariant under
dynamics. Our reasoning is as follows. Suppose we cons
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free b.c.’s. Changing from a cube of sizeL to one of size
L11 corresponds to taking a certain layer of couplings a
changing them from zero to nonzero values. Having alre
made an analogy betweenL and the timet for the dynamical
system, it seems appropriate to extend it to one betw
dynamical invariance (t→t11) and coupling covariance
(J→J1DJ). The analogy is even clearer if we consid
increasing volumes not by a whole layer at a time but b
single site at a time. Exploitation of this covariance prope
could result in a type of cavity method@29,66,67# for study-
ing the properties of realistic spin glass models.

In the nonstandard SK picture, there seems every rea
to expect nontrivial dependence of, e.g.,^e2bDH&J

a on the
manya ’s appearing for eachG. Thus, under changes of fi
nitely many couplings, eachPG would be changed to aPG8
with the sameqag’s but withdifferentweights. Nevertheless
by the translation-invariance–ergodicity argument m
tioned earlier in this section, thedistributionof thePG’s ~as
G varies over the metastate! in fact does not depend onJ and
hence is unchanged byJ→J1DJ.

Thus the above covariance property under changes
couplings places a large number of constraints on the di
bution of thePG’s that can arise in the nonstandard SK p
ture. We wonder whether all these constraints~which donot
arise either in the droplet-scaling or in the chaotic pairs p
tures! can actually be satisfied. Clearly, more study of t
issue is needed.

VIII. CONCLUSIONS

We have shown that the traditional picture of spin gla
thermodynamics, based on the Parisi ansatz as applie
finite-dimensional models, cannot hold for realistic sp
glasses in any dimension and at any temperature. This s
dard SK picture is a natural and straightforward extrapo
tion to infinite volumes of the main features of spin gla
ordering uncovered by Parisi and others for the SK mode
assumes a single infinite-volume overlap distribution fu
tion PJ (q) which is non-self-averaging, i.e., dependent
J. This picture proposes that the pure states are chose
dependently from some mixed~and, of course, non-self
averaged! thermodynamic staterJ with a decomposition of
the form of Eq.~15! and that the resultingPJ(q) will consist
of ~many! discrete d functions lying between a pair a
6qEA . The locations of thed functions~except for the pair
at 6qEA) and their weights depend on the coupling realiz
tion J, but for any fixedJ their locations are ultrametric
When averaged over the~uncountably many! coupling real-
izations chosen from the coupling distribution, the order
rameter distributionP(q)5 P̄J (q) shows the characteristi
form of a continuous component connecting thed functions
at 6qEA , and nonzero everywhere in between~at least for
0,T,Tc).

We have shown, however, that this picture can ne
hold: any PJ (q) with the weak (and physically reasonabl
property of translation invariance must be self-averagin,
due to the underlying translation ergodicity of the coupli
distribution. In Sec. IV we presented an explicit construct
of such a non-self-averaged thermodynamic staterJ , which
obeyed the physically important requirement of translat
covariance, and whose overlap distribution function was t
d
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translation-invariant. We know of no other~natural! con-
struction of a thermodynamic state for the EA model~which
is measurable with respect to the disorder configuration!, in
the event that the spin glass does indeed possess many
~in which case chaotic size dependence must be taken
account! at some dimension and temperature.

Although we presented these results~and much of our
other discussion on spin glasses! in the context of the EA
model, we stress that they apply quite generally to most
alistic spin glass models, because they depend only on
eral properties such as translation-invariance of the ove
function and translation-ergodicity of the underlying disord
distribution. These results lead, however, to an interes
approach to the thermodynamics of systems with many c
peting states that is far more general than consideration
spin glasses alone might indicate. The failure of the stand
SK picture arises from the fact that if many pure states
exist for a particular system~at some dimension and tem
perature!, then chaotic size dependence generally follow
and it becomes unreasonable to describe the thermodyna
through a single state—even though this state may be a m
ture of infinitely many pure states—as in the standard
proach. As an alternative, and based on the example
chaotic dynamical system, we describe the thermodynam
through anensemble of states~which may themselves be
mixtures of pure states! that we call the metastate. Withi
that approach, the idea of replicas~whose correlations deter
mine the metacorrelations of the metastate! becomes natura
and formerly mysterious concepts—such as replica sym
try breaking—become clear. Further, the connections
tween these and more recent concepts such as replica
independence and dispersal of the metastate can be e
uncovered.

A crucial issue is the replacement of the old concept
non-self-averaging~as dependence on the bulk coupling r
alization! with a version of dependence on boundary con
tions at infinity. This allows for the possibility that momen
of Q, for example, as computed through the distributi
PJ
(L)(q) in any finite volume can depend onJ for arbitrarily

large L—even thoughPJ (q) itself is independent ofJ.
Within the context of the nonstandard SK model, we repla
the idea of dependence onJ with dependence on the sta
G within the metastate forfixedJ. This notion corresponds
roughly speaking, to dependence on couplings at infin
~which yield a kind of annealed boundary condition at infi
ity! or to dependence onL, all for fixedJ.

Applying these results to the EA model, we find that se
eral scenarios for the metastate remain as logical possibil
in various dimensions and temperatures. One of course is
trivial paramagnetic phase. Another is the scaling-drop
model. Two other possibilities, mentioned in Ref.@26#, in-
volve statesG consisting of a continuum of pure states;
one of these scenarios the metastate is dispersed and i
other it is not, although both exhibit replica symmetry brea
ing. However, we see no evidence that either of these ap
to realistic spin glasses, and so do not discuss them fur
here.

An intriguing new possibility, also discussed in Ref.@26#,
is the chaotic pairs picture, which is different from bo
droplet-scaling and mean-field pictures. This picture follo
naturally from our earlier discussion on the metastate; it



e
i-

op
in
n
o
lly
ta

le
ic
p
ri
o
ur
n
ra
ed
h
pi

e
n.
ltr

ha
s
c
o
e
h

ab
hi
n
at
S

re
ls
p
dy
es
a
p
a
a

g

bl
g
y

for
res-
ent
dif-
a-

u-
ng

ll-
n
g.
-
e of
r in

out

ther
the
les

r
btle-

n

s
p
re

s
e
es

-
t.
cal
tes
ic
por-
mic
ssed
a
the
ps;

ell
ver-
-
hen
he

5208 55C. M. NEWMAN AND D. L. STEIN
infinitely many pure states, but with weights so mismatch
in any finite volume~with, say, periodic boundary cond
tions! that only a pair of pure states~related by a global spin
flip! appear. So in finite volumes this picture resembles dr
let or scaling, but it has a very different thermodynamics;
particular, there are infinitely many pure state pairs a
which of these appears in a given volume depends cha
cally onL. It is interesting to note that this scenario actua
arises in high dimensions in a highly disordered ground-s
model of spin glasses@8#.

Finally, we discussed a maximal mean-field picture cal
the nonstandard SK picture. This picture has features wh
resemble some of the familiar aspects of Parisi-type s
glass ordering in finite volume—and is consistent with va
ous numerical simulations which claim to see this type
ordering—but has an unfamiliar thermodynamic struct
and does not correspond to the usual picture presented i
literature. In particular, it does not possess nontrivial ult
metricity of all of the pure states corresponding to a fix
coupling realizationJ; indeed, one of our results is that suc
ultrametricity cannot occur in any reasonable spin glass
ture. It also does not possess non-self-averaging~in the sense
of J dependence! of thermodynamic quantities related to th
order parameter, such as the overlap distribution functio

Nevertheless, the features of non-self-averaging and u
metricity could appear in anyfinite volume if this picture
should hold. This leads to a further conclusion, namely, t
for systems with quenched disorder~and for inhomogeneou
systems in general! with many competing thermodynami
states,properties which persist in large finite volumes cann
be straightforwardly extrapolated to a description of th
thermodynamics. In these cases, the metastate approac
indispensible for sorting out the thermodynamics.

In any case, we have serious reservations about the vi
ity of the nonstandard SK picture. Although we cannot at t
point rule it out on purely logical grounds, it requires a
enormous number of constraints to be simultaneously s
fied. Further arguments suggesting that the nonstandard
picture of Sec. VII isnot valid ~in any dimension! will ap-
pear in a future publication.

Further work is needed to determine which of these
maining pictures does hold for real spin glasses. Work is a
needed to study the connections between the approach
sented in this paper to systems in equilibrium and the
namical behavior of systems out of equilibrium. Such inv
tigations are currently in progress. We conclude by ag
pointing out that although we have concentrated in this pa
on spin glasses, the phenomenon of thermodynamic ch
and the metastate approach to its analysis are potentially
plicable to any thermodynamic system~disordered or not,
inhomogeneous or not! in which there are many competin
pure states and the finite-volume boundary conditions~or
fields! are not~or cannot be! carefully chosen to favor one
~or a very few! of them.
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APPENDIX: CONSTRUCTIONS OF OVERLAP
DISTRIBUTIONS

In this appendix we briefly discuss different methods
constructing overlap distributions. Several approaches p
ently exist, and it may be the case that the use of differ
boundary conditions and/or limit procedures can lead to
ferentPJ (q)’s. This has led to some confusion in the liter
ture ~see, for example, the discussion in Refs.@85,86#! over
the ‘‘correct’’ way to computePJ (q). We emphasize at the
outset that, although the actual form of the overlap distrib
tion in various constructions can differ, our self-averagi
arguments of Sec. IV apply toall of them. That is, if a
particular construction of an overlap distribution has a we
defined thermodynamic limit at all~that does not depend o
the choice of an origin!, then it is necessarily self-averagin

The fact thatP(q) for various models, including short
ranged spin glasses, can depend sensitively on the choic
boundary conditions was pointed out by Huse and Fishe
Ref. @38#. They further argued thatP(q) was too global a
measurement to give reliably accurate information ab
numbers of pure states in many models~including relatively
‘‘simple’’ systems like conventional Ising ferromagnets!.
They provided examples whereP(q) could have a trivial
structure in spite of the presence of many states, and o
examples where it had a nontrivial structure in spite of
absenceof many states. Notwithstanding these examp
~which we believe to be correct!, much of the literature on
the subject persists in usingP(q) as an order parameter fo
spin glasses, and so it is necessary to sort out various su
ties which may arise in its use.@Arguments supporting the
use ofP(q) to gain interesting thermodynamic informatio
on spin glasses are presented in Ref.@72#.#

In Ref. @25# we presented two different construction
~each of which yields a well-defined limit for the overla
distribution as L→`). In these constructions, there a
boxes, of sizesLa , Lb , andLc , with periodic b.c.’s imposed
on theLc box, fixed couplings in theLb box, and overlaps
computed in theLa box. The first construction take
1!Lb!La5Lc , while the second construction, which is th
one described in Sec. IV of this paper, tak
1!La!Lb!Lc . The averaging~over the couplings in the
region betweenLb andLc) is necessary to obtain a thermo
dynamic limit only when many pairs of states are presen

The first of these constructions is related to numeri
computations which appear in the literature; it compu
PJ (q) directly without prior construction of thermodynam
states. The second of these is of greater theoretical im
tance in the sense that it first computes a thermodyna
state~the average of the periodic b.c. metastate, as discu
in Sec. VI! which, if many pure states are present, will be
mixture of them. This second construction first takes
thermodynamic limit, and then takes replicas and overla
thus it averages over the couplings betweenLb andLc sepa-
rately for each of the replicas. The first construction, as w
as the metastate procedure of Sec. VI for constructing o
laps~which takesLa , Lb , andLc as in the second construc
tion!, uses the opposite order, taking replicas first and t
the thermodynamic limit; thus replicas are taken with t
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same couplings in the entireLc box. If RNI is present, this
opposite order of operations could lead to a differe
PJ (q), as discussed in Sec. VI and Ref.@81#. The form of
the periodic b.c. overlap distribution~using the construction
of Sec. VI! for the nonstandard SK picture was discussed
Sec. VII; here we will mostly focus on the two constructio
discussed above.

In agreement with the arguments of Huse and Fisher@38#,
we noted in Ref.@25# that these two constructions probab
give different limit overlap distributions for the random-fie
Ising model @87# and for the highly disordered spin glas
model of Ref.@8# in high dimensions. Furthermore, they po
sibly would also yield different distributions for the usu
finite-dimensional spin glasses if something like the no
standard SK picture, described in Sec. VII, holds.

In the case of the random-field Ising model, the first co
struction should yield a singled-function spike even for
T,Tc because, for each volume, only one of the two p
states will appear~although which one will depend on th
volume!. This situation is illustrated in Fig. 1~b! of Ref. @38#.
The second construction, however, should yield the expe
pair of d functions symmetrically placed with respect to t
origin, because here the replicas are drawn from the ther
dynamic mixed state which is an equal mixture of the m
netization up and down pure states.

Our second example uses the highly disordered grou
state model of Ref.@8# in dimensions high enough so th
there exists an uncountable number of ground states.
situation here is essentially the ‘‘chaotic pairs’’ picture
Sec. V. In any specified volume~as usual, with periodic
boundary conditions!, only a single pair of ground state
related by a global spin flip, appears, but which pair
present changes chaotically with volume. Therefore, we
pect the first construction to yield only a single pair ofd
functions at6qEA , as in the Fisher-Huse droplet pictur
~This would also be the case for a construction like that
Sec. VI.! However, we believe that the second construct
will yield a singled-function spike at zero. This is becaus
each ground state can be thought of as consisting of an
nite set of invasion ‘‘trees’’~see Refs.@8# and@9# for details!
of rigidly coupled spins. Each tree can exist in one of tw
configurations which are global flips of each other. A grou
state is therefore an assignment of a particular choice to e
tree; the set of ground states is the collection of all poss
assignments. The averagerJ of the metastate should be
uniform distribution over the uncountably many grou
states~in the sense of independent tosses of a fair coin
each tree!.

The overlap of any two ground states chosen at rand
~i.e., according to this uniform distribution and indepe
dently of each other! can therefore be related to the overl
of two Bernoulli coin-tossing processes. Since half of
flips will agree and half will disagree for almost every pair
process realizations, the overlap should be zero and there
we expect thatPJ (q)5d(q) for almost everyJ. ~We em-
phasize that this argument is only heuristic, and in particu
assumes that no trees contribute too much to the ove
which is reasonable but has not been proven at this time!

This last example provides a nice illustration of the co
tention of Huse and Fisher that a trivial overlap function~in
this example, a singled function! can mask the existence o
t
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more than one pure state~in this example, the extreme cas
of uncountably many!. It also illustrates the contention of th
authors in Refs.@25# and @86# that P(q) may be a poor
choice of order parameter in finite dimensional models.

The nonstandard SK picture presented in Sec. VII p
vides a more interesting possibility. Here there may also
two forms of PJ(q), depending on which construction i
used ~but both forms are still self-averaging!. The picture
was created so that the overlap distribution constructed
cording to Sec. VI consists of a collection ofd functions of
varying weights lying between a pair at6qEA . While it is
less clear what will occur in this case in each of the tw
constructions under discussion, a likely outcome~if this pic-
ture were to hold! is that the first construction yields th
familiar ParisiP(q)—i.e., a continuous component connec
ing the pair ofd functions at6qEA . However, the second
construction should then result either ind(q) or else in a
continuous distribution with nonzero density betwe
6qEA , but no d functions at6qEA . The reason for nod
functions at6qEA is that here states are chosen from a d
tribution ~i.e., from a metastate! containing uncountably
many such states, so that the probability of two states be
the same or related by a global spin flip is zero.

So far we have discussed the consequences of the
constructions proposed in Ref.@25#, mostly using periodic
boundary conditions.~Different boundary conditions are dis
cussed in Secs. V and VI.! In a comment on Ref.@25#, Parisi
@85# proposed two constructions, which are further discus
in a reply from the authors@86#. Parisi’s constructions~de-
noted asPI

(1) andPI
(2) in his comment! are modifications of

the two constructions of Ref@25#. PI
(1) is similar to the first

construction~with replicas having the same couplings in th
entireLc box!, but takesLa5Lb!Lc . PI

(2) is likewise simi-
lar to the second construction~with separate averaging o
couplings betweenLb and Lc for each of the replicas! but
again takesLa5Lb!Lc . Once more, finite-size effect
might lead, in each case, to overlap distributions differ
from the corresponding constructions in Ref.@25#. Parisi as-
serts thatPI

(2)5d(q) for realistic spin glasses, which may b
the case for some of the pictures presented in this pa
although it is not clear whether it holds for all~particularly
the nonstandard SK picture!. For a more detailed discussion
see Refs.@85# and @86#.

In our work, we have mostly chosen constructions wh
overlaps are computed in boxes which are small compare
the box on which boundary conditions are placed. We
lieve this to be essential if one is trying to understand
microscopic structure of the pure states, in particular, w
the spin configurations and their correlations and overl
look like in the neighborhood of the origin@88#. In this ap-
pendix, however, we have emphasized that different pro
dures may well lead to different overlap distributions~and in
models better understood than the EA and related mod
this appears often to be the case.! It remains an important
issue, to be eventually resolved, whether in the EA model
different overlap procedures discussed do in fact lead to
ferent overlap distributions—indeed, this may be a better s
nature of many states than whether asingleprocedure gives
rise to a complicated or trivialP(q). In all cases, however, a
given procedure leading to a thermodynamic overlap dis
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bution function which has the weak property of translati
invariance will always be self-averaging.
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@67# M. Mézard, G. Parisi, and M. A. Virasoro, Europhys. Lett.1,

77 ~1986!.
@68# D. J. Thouless, P. W. Anderson, and R. G. Palmer, Phi

Mag. 35, 593 ~1977!.
@69# A. J. Bray and M. A. Moore, J. Phys. C13, L469 ~1980!.
@70# A. J. Bray and M. A. Moore, J. Phys. A14, L377 ~1981!.
@71# N. D. Mackenzie and A. P. Young, Phys. Rev. Lett.49, 301

~1982!.
@72# J. D. Reger, R. N. Bhatt, and A. P. Young, Phys. Rev. Lett.64,

1859 ~1990!.



ry

et

tt

er
.

e

u
-
dis

en

g
ly
rum
a

g-

n-
res
ri-
t is
d-
he
nt

ich
this

55 5211METASTATE APPROACH TO THERMODYNAMIC CHAOS
@73# M. Aizenman, Commun. Math. Phys.73, 83 ~1980!.
@74# Y. Higuchi, inRandom Fields, edited by J. Fritz, J. L. Lebow-

itz, and D. Sza´sz~North-Holland, Amsterdam, 1979!, Vol. I, p.
517.

@75# A. Gandolfi, M. Keane, and C. M. Newman, Prob. Theo
Relat. Fields92, 511 ~1992!.

@76# F. Ledrappier, Commun. Math. Phys.56, 297 ~1977!.
@77# F. Comets, Prob. Theory Relat. Fields80, 407 ~1989!.
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